After the Lead Ban

Thirty years later, we're still asking: Is steel better than lead?

Outdoor Life Online Editor

The most dramatic press release ever dropped on outdoor writers and editors began with words to the effect that never before had news of such grave consequences been issued to sportsmen. It was the early 1970s, and various studies had indicated that ingestion of lead shot pellets was causing massive die-offs of some waterfowl species. Mounting evidence that lead poisoning was killing ducks, or that lead ingestion was lowering their resistance to fatal diseases such as avian cholera, compelled the U.S. Fish and Wildlife Service (USFWS) to announce that after a specified date, lead shot would no longer be allowed for waterfowl hunting.

Winchester Arms took immediate action and initiated an in-depth research program to determine the effectiveness of what was then considered the only viable alternative to lead shot-steel. Part of Winchester's steel shot test program involved simulating flying ducks by rigging live ducks on a wire that "flew" them past a mechanically mounted and fired shotgun loaded with steel shot. The stricken ducks were examined and X-rayed. Pertinent data such as fatality ratio was then fed into a computer.

Unfortunately, the findings fell into the hands of an otherwise uninformed public relations flack in Winchester's East Coast office, who took one look at the infant data technicians were assembling to build a computer model and issued the infamous press release.

The key word in the release was "crippling." The initial data of Winchester's live duck tests showed a high incidence of ducks being crippled or living for a substantial period of time before dying. Using Winchester's bare-bones steel shot test data, one could speculate that as many ducks would be lost to crippling as were being lost to lead poisoning, or more. Thus the "crippling effect" became a rallying cry among hunters and sportsmen's organizations, who now joined an anti-steel-shot crusade in increasing numbers.

Gun Issues
Another complaint about steel shot was that Winchester's data showed that steel shot loads expanded the chokes in their test guns and that the hard shot scored the barrel walls. This news outraged lovers of fine shotguns. To be sure, steel shot did disfigure shotgun barrels. Of course, no one mentioned that such barrels could be, or perhaps already had been, ruined by using modern lead-shot magnum loads. Another often expressed fear was that if the Feds and state game agencies got away with forcing waterfowlers to use steel shot, would they make us use steel shot for upland hunting? Or even trap or skeet? Surely it would be the end of all wing-shooting.

During the 1960s, Winchester had franchised a number of shooting clubs under its banner in order to attract newcomers to wing-shooting games. To do so it offered club members the use of Winchester-owned shotguns and cheap ammo. If you looked closely at those boxes of club ammo you'd see two interesting notations: "Super Ferro" and "Use only in club-owned guns." Ferro means the shells were loaded with iron shot. The obvious reason was because iron shot was cheaper than lead. At the Winchester Gun Clubs the iron-shot-loaded ammo went unnoticed because scores at trap and skeet were essentially the same as with lead shot. (Remember this.)

Like it or not, once it became evident that steel shot or an acceptable nontoxic substitute was to become the law, ammo companies rolled up their sleeves and began to develop workable steel-shot ammo in earnest.

Initial Problems
Basically, they faced two problems. The physical problem was finding a way to protect shotgun barrels from the harder-than-lead steel pellets. Loading techniques would also have to be developed to put the maximum weight of steel shot in a shotshell casing. Since steel is lighter than lead, an ounce and a quarter of steel shot would require more space in the shell than an equal weight of lead. But by simp reducing the thickness of the wad column, there was room for more shot, and even more space could be made by using denser propellants. Combining these advances is what allows today's ammo-makers to offer 11/4 ounces of steel shot in 23/4-inch, 12-gauge shotshells and proportionally heavier charges in 3-inch and 31/2-inch ammo and heavy 10-gauge loads.

The problem of steel shot scratching shotgun bores was solved by using thicker shot cups that cushioned the shot and acted as a barrier between the shot column and barrel wall. Damage to chokes was likewise either reduced or eliminated by using thicker shot cups, plus gunmakers were now tempering new screw-in chokes specifically for steel shot. Along the way it was discovered that steel shot patterns beautifully and that less choke is needed to produce the dense patterns that waterfowlers love.

Shot Physics 101
The ballistics answer to the steel-shot problem is founded in physics and the laws of motion. Everyone remembers the fundamentals from high school. When applied to shot pellets it goes like this: If you have two spheres of equal diameter but of different weights, and set them in motion at equal velocity, the heavier sphere will retain its velocity (call it energy if you want) better than the lighter sphere. And there you have the fundamental difference between lead and steel shot.

So let's make some real ballistics comparisons between lead, which has a specific gravity (S.G.) of 11.35 and iron (steel is an alloy of iron), which has an S.G. of 7.89. The higher the specific gravity, of course, the heavier the metal. For example, gold has an S.G. of 19.32 and would make a wonderful shot.

Let's say that we fire No. 4 lead and steel-shot pellets at a muzzle velocity of 1,300 feet per second (fps). At 40 yards the lead pellet would have a remaining velocity of 747 fps and energy of 4 foot-pound (ft.-lb.). The steel shot, however, would have a remaining velocity of 627 fps and energy of 2 ft.-lb. at 40 yards-only half as much as the lead pellet. Thus, in order to make steel shot as effective as lead we have to either fire it at a higher velocity or use bigger -heavier-steel shot. Let's suppose we fire the steel shot at 1,500 fps, which yields a 40-yard velocity of 679 fps and increases energy to 2.34 ft.-lb. This obviously isn't a great improvement, so next we try larger No. 2 steel shot fired at 1,300 fps. The 40-yard velocity is now 678 fps and energy is 3.59 ft.-lb., which is getting closer to that of lead. Finally we up the velocity of the No. 2 steel shot to 1,500 fps and what we get at 40 yards is a remaining velocity of 737 fps and energy of 4.29 ft.-lb., which is virtually identical to the figures for lead shot.

Even as the performance and knowledge of steel shot progressed tremendously beyond those early Winchester tests, some problems remained apparently unsolvable. One was the high price of steel-shot ammo. Time and again I've asked ammo company officials why today's steel-shot loads are so expensive while those old Super Ferro shells sold at Winchester Gun Clubs were so cheap. Their replies usually seem sincere but remain unconvincing.

Another impenetrable barrier to universal acceptance of steel shot is a large body of remaining doubt that steel is the ultimate solution. You need only to skim through the specific gravities of various elements to find metals as heavy as, or even heavier than, lead, and thereby the right stuff to make shot from. But alas, they are either too expensive to be practical (gold for instance) or as toxic as lead or even more so.

A couple of them, though, catch the eye. Bismuth, for instance, has an S.G. of 9.75, which is between iron and lead on the weight scale, yet it's soft enough to be a barrel-friendly shot. Another eye-catcher is tungsten, with an S.G. of 19.3, which is more than half again as heavy as lead. But both have problems.

Bismuth is rather expensive to produce and convert into shot, but that hasn't prevented wealthy sportsman-publisher Bob Petersen from bringing bismuth shotshells to market.

Tungsten, one of the hardest of all metals, would be difficult to form into shot, but it offers a fascinating alternative that has been refined and exploited by Federal Cartridge Co. Federal now grinds tungsten into a fine powder and mixes it with powdered iron or steel and then molds it into shot-size pellets that are held together by a polymer. By adjusting the ratio of the tungsten-iron blend, the pellet weight (per size) is very nearly the same as lead. With Federal's tungsten-polymer shot, the weight of lead is completely duplicated. The chart on page 20 shows how they all compare, using identical-size shot launched at equal velocities.

Bismuth is rather expensive to produce and convert into shot, but that hasn't prevented wealthy sportsman-publisher Bob Petersen from bringing bismuth shotshells to market.